ENSC 427: COMMUNICATION NETWORKS

Spring 2023

FINAL PROJECT
ANALYSIS OF CLOUD SECURITY USING TLS/HTTP/TCTP

www.sfu.ca/~alons/ProjectHomepage.html

WRITTEN BY GROUP 3

ALON SINGH 301381523 alons@sfu.ca
RIKU MAKITA 31381399 rmakita@sfu.ca

Table of Contents

Table of Contents... ceeneenenes ceeneenenes ceeneenenes ceeneenenes ceeeenesnesneeensensnessensansnesassasnes 1
L ADSETACK......c.ocoeeeeceeeeeeereceeeeeeseestesseeeessessessessesssssssssessessasssssseessessessssseessessessesssessessesseessessessesssessessessasasses 2
2 Introduction...... ceeneenenes ceeneenenes ceeneenenes ceeneenenes ceeneenenes ceeneenenes 3
3 Technical Overview.... ceereeeesneenenne 4
3.1 CloUd SECUTILY OVEIVIEW.....cuviieiieeiieciieeteeeteeeieeeteeette e aeestaeessaeesaeesbeesaseeessaesssaesnsasessaeenseeensns 4
3.2 APPLCAtION LAYEr OVEIVIEW........oiiiiiieieeiiee ettt eette e e ete e e eetee e e e ree e seraeeeesaeeesnsasaennsenas 4
3.3 Trusted Cloud Transfer ProtOCOL.............ccviiiiieiiieieeeece ettt rae e e 6
4 Simulation... ceereeeenenne 8
o o I N £ G JO PR 8
S o I I e T o = T RSP 9
A3 TLS -WireShark.. ... 12
5 Discussion..14
6 Conclusion....... veeeneeneenennene 16
7 References....17
8 Appendix: HTTP ns3 Simulation Code............uiuiiiiiiiiiiiiiiiiiicisssse e 18

1 Abstract

Cloud security solutions commonly use HTTP intermediaries which include reverse proxies, load
balancers, and intrusion prevention systems. Which acts as the TLS server connection ends and
access HTTP/TLS plaintext to perform their functions. This method chooses its configuration
randomly without considering the vulnerability to attacks and outside threats. Further, it has
various other shortcomings such as inefficient presentation languages, message flow
vulnerabilities and the circumvention of HTTP streaming. Fueled by cloud adoption by large
enterprises increasing exponentially, the need for improvement and cunning edge security arises.
One of the potential solutions that addresses these issues is the Trusted Cloud Transfer Protocol
(TCTP), which applies entity body encryption that can overcome these vulnerabilities. The key
concept of TCTP is HTTP application layer encryption channels which integrate TLS
functionality into the HTTP application layer. In this project, we will delve deeper into TCTP and
other potential methods in relation to cloud security.

2 Introduction

With the evolution of technology and humanity pushing towards complex topics such as Artificial
Intelligence, Genomics, Robotics, Quantum Computing and Digital Reality it has become
increasingly important for the company developing these new innovations to ensure their data
and applications are readily available and secured for authorized users. There must be a reliable
method to access, develop, and share this information securely throughout the world. Currently
there are a few companies that lead in this industry which include Datadog, Check Point
Software, Trend Micro, Crowdstrike, and VMware. We will first discuss what branches
incompasses cloud security and what our focus of the paper will be on. Then to our objective to
understand how these companies incorporate TLS, HTTP, and TCTP to operate their security
software. First we will discuss how TLS and HTTP work and their function within cloud security.
Further, we will introduce TCTP which acts on top of the HTTP payload and where its use case
can be seen. Finally, simulations will be done to decipher between malicious vs authorized
behavior through communication to accurately represent the companies that offer this type of
cloud security software to corporations and we will compare simulation time to determine which
method is most efficient. Our main source for this project came from an article by M. Slawik,
"The Trusted Cloud Transfer Protocol," and also uses information particularly on TLS and SSL
from the textbook J. F. Kurose and K. W. Ross, “Computer Networking, 8th Edition” chapter 8.

The paper The Trusted Cloud Transfer Protocol offers great background on the use and purpose
of TCTP but goes into very little detail on its performance and integration [1]. Going forward, this
paper will take into consideration the suggested further developments made by M. Slawik.
Benchmarking the Performance Impact of Transport Layer Security in Cloud Database Systems
on the other hand goes into great detail on simulation results, successfully presenting
performance benchmarks such as throughput and latency with different encryption techniques.

3 Technical Overview

3.1 Cloud Security Overview

Cloud security is a shared responsibility model where the cloud security provider is responsible
for the security of hardware and software while the client is responsible for the security of their
own assets. The most important functionality of cloud security is to ensure only authorized users
can access the data. Since cloud environments are heavily interconnected, it is very difficult to
maintain a secure perimeter. It is always going to be a balance between enabling companies to
take advantage of cloud computing benefits while minimizing data security risks. Cloud security
includes the following: identity and access management, governance, encryption, disaster
recovery, monitoring, and compliance. The paper will delve deeper into encryption which is how
cloud security providers scramble data so only authorized parties can send and receive
information. Encrypted data is meaningless to hackers unless the decryption key is discovered.
Encryption can be done both while data is being stored in the cloud or when it is being
transmitted from sender to receiver. There are two main encryption methods in industry both
provide a secure communication channel between two applications on the internet. The
subsequent section will explain in more detail the (SSL) Secure Socket Layer and (TLS)
Transport Layer Security.

3.2 Application Layer Overview

Liked discussed in the previous chapter, the two main encryption methods used in industry today
are the Secure Socket Layer and Transport Layer Security. These two methods are both present
in the application layer and utilize HTTPS as shown below in figure 1. Starting with SSL, which
originated in the 1990s created by Netscape was the first innovative way to secure
communications and encrypt messages. SSL begins with a TLS handshake where two
communicating parties open a secure connection and exchange a mutual public key. Within this
session, a session key is created and this key encrypts and decrypts all communication after the
TLS handshake. Each session will have a different key and only the two parties involved have
access to the specific key. This makes this communication explicit and requires the client to issue
a specific command to the server after the connection. In comparison, the Transport Layer
Security uses an implicit connection. The server defines a specific port for the client to be used
for the secure connection. Transport Layer Security is known now to be the improved version of
Secure Socket Layer and is the industry standard.

AT . =
© Application Layer 4 h
Jud
S
.2 Presentation Layer | HTTP HTTPS
=1
o

< Session Layer) L | \[SSL J { TLS]/
..: Transport Layer= TCP M UDP }
% Network Layer IP J
= : 4 ™y
g DatalinkLayer |Egego23 || IEEE 802.11
I_ ~ Physical Layer | (Ethernet) (WLAN)

bt g

Figure 1: Application Layer

To provide further clarity on these protocol processes, the following is an example of how
Transport Layer Security is implemented from the textbook.

_ TCP SYN

(a) TCPISYNACK
- TCP ACK
" — TLS hello

O emtee—

(c)

Create Master | _ EMS = k" (ms)
Secret (M5) = .—Decrypts EMS with
K, to get M5

Figure 2: TLS Handshake

In this example, communication is done between Bob and Alice. In stage a, Bob opens up a TCP
connection with Alice. In stage b, verification is done to ensure that Alice is Alice and in stage c,
Bob will send a secret key to Alice which will be used by both to generate a symmetric key. This
interaction is known as the TLS handshake and is the first protocol in TLS communication.

3.3 Trusted Cloud Transfer Protocol

Trusted Cloud Transfer Protocol, also known as TCTP, is an example of a potential innovative
new solution that streamlines TLS and SSL. Its method is unique and different and in this section
we will discuss the advantages and disadvantages in theory to using this method. How TCTP
works is by securing the HTTP payload by encrypting and authenticating it using TLS at the
application layer as shown in figure 3. This means that TCTP is cross compatible to hold secure
encryption in both the HTTP and HTTPS application layer. This allows cloud computing
intermediaries to access all headers while addressing the issues mentioned earlier through
entity-body encryption. The negotiation of encryption keys and cipher suites is done by wrapping
the TLS Handshake Protocol into the HTTP payload and sending it through intermediaries. By
relying on this secure handshake, the risk of intermediaries acting as man-in-the-middle and
compromising TCTP security is minimized.

V= i . Fa B /» a
© Application Layer
o]
©
L Presentation Layer | HTTP HMPS
o :) :
Q -
& Session Layer L) \\L ?SL] | TLS \/
& Transport Layer | TCP || UDP
% Network Layer | IP
: . i\'f = ™ N
@ Datalink Layer || \epE go2.3 || IEEE 802.11
__\I_ Physical Layer \ (Ethernet) 1§ (WLAN)

Figure 3: TCTP in the Application Layer

User Agent

Origin Server

HTTP Header HTTP Header T TLS Record
i .'.- TS Record ™ 3 | T—?Hl-'l-i-" d
HTTP - 1S Record "_'j TLS Record
Pa'gl'lﬂ'ﬁd E L TLS Record
= TLS Record L RECON
| |
HTTP/TLS
|
Key exchange through = HTTP Header
intermediary, without 2
a direct connection 3 TL5 Record
m
between user agent = LS Record
and origin server. = TLS Record
| |
HTTP/TLS
| |
HTTP Header HTTP Header - I'LS Record
TP A IL_TLS Record 3 |H{_TLS Record
= LS Record 3 TLS Record
Payload | a — ol TS Record
- LS Record . —

Figure 4: TCTP Flow Chart

“Trusted Cloud Transfer Protocol” (M. Slawik) offers great background on the use and purpose of
TCTP but goes into very little detail on its performance and integration [1]. Going forward, this
paper will take into consideration the suggested further developments made by M. Slawik.
Benchmarking the Performance Impact of Transport Layer Security in Cloud Database Systems
on the other hand goes into great detail on simulation results, successfully presenting
performance benchmarks such as throughput and latency with different encryption techniques.

The TCTP method of using the TLS header to encapsulate HTTP data would work very similarly
to encapsulation where IPv4 addresses are used to surround IPv6 packets making the data
receivable by both IPv4 and IPv6 networks. The HTTP header is sent as the payload of an
HTTPS/TLS packet containing its own header meaning the data can be read by both HTTP and

TLS systems.

4 Simulation

4.1 HTTP -ns3

Although ns3 allows for HTTP simulations, there is not a simple method to incorporate
encryption into the simulation the way the HTTPS either TLS or SSL, therefore using ns3 to
compare our objects will not produce useful results in a uniform environment. Below is the
packet capture of a simple HTTP simulation that will not be compared to any other captures.

Packet/data rate plot for pcap file "http-1-2.pcap" (7.99 KiB / 8s 4ms 172us)
1kpps T T T T T T - 400kbps
Packets/s
Bits/s on the wire
Bits/s captured
900 pps -
- 350kbps
800 pps [~
-{ 300kbps
700 pps -
- 250kbps
600 pps |-
& ©
g g
‘g 500 pps |- - 200kbps E
o] . ©
s \ N 8
400pps [N\ AN
- 150kbps
\
‘\: \\
300 pps V- N
\
\ - 100kbps
200 S
pps \
\ AN 4 50kbps
100 pps |- \\
\
opes : 2 . g 2 2 : 2 20 0P
%, %, %, %, o, %, %, ‘0, %, %,
% % %@ S % % % o % 2
Time

Figure 5: Packet capture of the simulated network

4.2 HTTP - Wireshark

Below are the examples of HTTP data being pulled using the curl method to download site data.
This method ensures that the data is not cached in any browser and no additional data is
downloaded. The packet captures from the site www.httpvshttps.com [7] . This resource allows
us to download 360 non-cached images from both an HTTP and a HTTPS platform.

curl http:

Figure 6: Example of the curl command

alons@debian:~/workspace/ns-allinone-3.30/ns-3.30% curl
http://www.httpvshttps.com

<html>
<head>

<script src="https://www.httpvshttps.com/check-server.js"></script>
<script>

function log(o) {if (console) console.log(o);}
var proto = window.location.protocol;

proto = proto.substring(@,proto.length-1);
function setActiveMenu() {
if ('http' == proto) {
document.getElementById('menu-http').className += '

active';
} else if ('https' == proto) {
document.getElementById('menu-https').className += '
active';

}

</script>

<script>

Figure 7: Example of the return website data

Packet rate

Packet/data rate plot for pcap file "httpys.pcap" (39.04 KiB / 624ms 537us)

9kpps

8kpps -

7kpps |-

6kpps |-

5kpps -

akpps -

3kpps |-

2kpps |-

1kpps |-

' ' ' ' ! Packets/s
Bits/s on the wire
Bits/s captured

12Mbps

- 10Mbps

-| 8Mbps

-| 6Mbps

-| 4Mbps

- 2Mbps

0 pps

Time

Data rate

Figure 8: Packet capture of “HTTP vs HTTPS”

okpps

8kpps

Tkpps |-

6kpps

Skpps

Packet rate

4kpps

3kpps

2kpps

1kpps

0 pps

Packet/data rate plot for pcap file "httpgaia.pcap" (6.06 KiB / 678ms 757us)

T T T T T T
Packets/s

Bits/s on the wire
Bits/s captured

8Mbps

7Mbps

6Mbps

5Mbps

4Mbps

Data rate

3Mbps

2Mbps

1Mbps

0 b
o) °P®

Figure 9: Packet capture of “Bill of Right” [8]

10

B)

Segment Length (

Throughput for 128.119.245.12:80 > 192.168.244.129:57526 (MA)
http_gaia.pcapng

4000
30000
3000
20000
2000
10000
1000
Ot - 40
0.2 0.25 0.3 0.35 0.4
Time (s)

(s/suq) Indybnouy] abeiany

Figure 10: Throughput of the “Bill of Right”

11

4.3 TLS - Wireshark

Packet/data rate plot for pcap file "httpssfu.pcap” (47.01 KiB / 100ms 741us)
30kpps T T T T T T T T T 500Mbps
Packets/s
Bits/s on the wire
Bits/s captured
- 450Mbps
25kpps |-
-| 400Mbps
350Mbps
20kpps
| - 300Mbps
E | w
e £
4% 15kpps |- - 250Mbps ¢
g |
& |
| - 200Mbps
M
10kpps |- |
| -| 150Mbps
| ‘ ‘
|
‘ |
| I -| 100Mbps
|
5kpps - | |
I
| \ HIN
| | -| 50Mbps
|
L
_ . _ . S
0 pps o ° '.0 bps
2,
Figure 11: Packet capture of “SFU” [9]
Packet/data rate plot for pcap file "httpsys.pcap” (45.78 KiB / 570ms 114us)
20kpps T T T T T 350Mbps
Packets/s
Bits/s on the wire
Bits/s captured
18kpps | \
-| 300Mbps
16kpps -
- 250Mbps
14kpps -
12kpps -
+ 200Mbps
s o
g &
E 10kpps - | s
K | 8
& |
|
\ + 150Mbps
8kpps |- |
|
|
|
6kpps |-
PP ‘\‘ - 100Mbps
|
4kpps |- |
|
| - 50Mbps
|
[~ N
2kpps - | ’
\
0 pps - L i I . _ _
o

Figure 12: Packet capture of “HTTP vs HTTPS”

12

Segment Length (B)

10000+

80007

60007

4000¢

20007

Throughput for 142.58.228.150:443 -+ 192.168.244.129:51344 (MA)
https_sfu.pcapng

0.02 0.04 0.06

Time (s)

0.08

1350000

1300000

1250000

1200000

1150000

1100000

150000

(s/s1q)andybnoiy] abesany

Figure 13: Throughput of “SFU”

13

Throughput for 45.33.7.16:80 - 192.168.244.129:49492 (MA)
http_vs.pcapng
17500 300000
15000
250000
12500
200000 ¥
2
) &
£ 10000 ®
2 7
[o
- 150000 §
£ =
% 7500 5
n Z
&
100000 *
5000
50000
2500
ok . Jo
0.1 0.15 0.2 0.25
Time (s)

Figure 14: Throughput of HTTP from “HTTP vs HTTPS”

Segment Length (B)

12500

10000

7500

5000

2500

Throughput for 45.33.7.16:443 » 192.168.244.129:44118 (MA)
https_vs.pcapng

300000

200000

100000

0.1 0.2 0.3 0.4
Time (s)

0.5

(s/suq) andybnouay] sbessny

Figure 15: Throughput of HTTPS from”HTTP vs HTTPS”

14

In figures 14 and 15, we can see that the downloaded HTTP throughout takes ~290ms and that
HTTPS takes ~550ms. This means that HTTPS takes almost twice as long to use to download the
same data, which makes the most sense since the encryption process will add time to the
process. However, programs such as SPDY make HTTPS significantly faster in practice. This can
be seen from the “HTTP vs HTTPS” website below.

HTTP vs HTTPS Test e e
Encrypted Websites Protect Our Privacy and are Significantly Faster 4 3 8 5
Done! Please try HTTPS,
HTTP vs HTTPS Test HTTP & HTTPS
Encrypted Websites Protect Qur Privacy and are Significantly Faster
e e T 826 s
8% faster than HTTP

Figure 16: Results from the test site.

SPDY (pronounced "speedy") is a networking protocol developed by Google in 2009 to improve
the speed and efficiency of HTTP (Hypertext Transfer Protocol) by reducing the latency and
improving the performance of web pages. SPDY is an experimental protocol that has been
superseded by HT'TP/2 and is no longer actively developed [12].

SPDY operates by multiplexing multiple streams of data over a single TCP connection between a
client and a server. This allows for multiple requests and responses to be sent and received
simultaneously, eliminating the need for multiple TCP connections and reducing the amount of
time required for data transfer.

SPDY also introduces several new features to HT'TP, such as server push and header
compression, which reduce the amount of data transferred over the network and improve page
load times. Server push allows the server to send resources to the client before the client
requests them, reducing the number of round trips required to load a page. Header compression
reduces the size of HTTP headers, which can account for a significant portion of the data
transferred in a web page.

In summary, SPDY is a networking protocol designed to improve the speed and efficiency of
HTTP by reducing latency, enabling multiplexing of multiple streams over a single connection,
and introducing new features such as server push and header compression. While SPDY is no
longer actively developed, its legacy lives on in HTTP/2, which incorporates many of its features
and improvements.

15

6 Conclusion

In conclusion, the comparison of HTTP to TLS and HTTPS highlights the importance of secure
communication in today's digital age. HTTP, the widely used protocol for data transfer, lacks
security measures that make it vulnerable to cyber attacks. TLS and HTTPS, on the other hand,
offer end-to-end encryption, ensuring the privacy and integrity of data being transmitted over the
network.

The comparison shows that HTTPS, which combines HTTP and TLS, offers a secure
communication channel by encrypting the data being transferred and ensuring that the receiver
is authentic. It offers protection against various attacks such as man-in-the-middle,
eavesdropping, and data tampering. TLS, on the other hand, offers similar encryption and
authentication features but is implemented at a lower level in the network stack, providing an
additional layer of security.

Although HTTPS and TLS offer significant security benefits over HTTP, they come at a cost of
increased complexity and overhead in terms of processing and computing resources. However,
with the advancement of technology and increasing concerns over online security, HTTPS and
TLS have become essential tools in securing online communication.

Therefore, the study emphasizes the importance of implementing secure communication
protocols such as TLS and HTTPS to protect against cyber attacks. It also highlights the need for
organizations to adopt best practices for online security and educate their users to ensure safe
online communication.

16

7 References

[1] M. Slawik, "The Trusted Cloud Transfer Protocol," 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science, Bristol, UK, 2013, pp. 203-208, doi:
10.1109/CloudCom.2013.126. [Accessed: 26-Feb-2023]

[2] S. Miiller, D. Bermbach, S. Tai and F. Pallas, "Benchmarking the Performance Impact of
Transport Layer Security in Cloud Database Systems," 2014 IEEE International Conference on
Cloud Engineering, Boston, MA, USA, 2014, pp. 27-36, doi: 10.1109/IC2E.2014.48. [Accessed:
26-Feb-2023]

[3] M. Msahli, M. T. Hammi and A. Serhrouchni, "Safe box cloud authentication using TLS
extension," 2015 International Conference on Cyber Security of Smart Cities, Industrial Control
System and Communications (SSIC), Shanghai, China, 2015, pp. 1-6, doi:
10.1109/SSIC.2015.7245679. [Accessed: 26-Feb-2023]

[4] Jabir, Raja & Khanji, Salam & Ahmad, Liza & Alfandi, Omar & Said, Huwida. (2016). Analysis
of cloud computing attacks and countermeasures. 1-1. 10.1109/ICACT.2016.7423295. [Accessed:
26-Feb-2023]

[6] Singh, I. D. (2013, December). Data Security in cloud oriented application using SSL/TLS
protocol - IJAIEM. Data Security in Cloud Oriented Application Using SSL/TLS Protocol
Retrieved February 27, 2023, from https://ijaiem.org/volumeZissuel2/IJAIEM-2013-12-10-022.pdf
[Accessed: 26-Feb-2023]

[6] Corelight. (n.d.). Corelight/plotcap: Plot packet and data rates over time given a PCAP file,
with gnuplot. GitHub. Retrieved April 11, 2023, from https://github.com/corelight/plotcap

[7] HTTP vs HTTPS TEST. HTTP vs HTTPS - Test them both yourself. (n.d.). Retrieved April 11,
2023, from http://www.httpvshttps.com/

[8] National Archives and Records Administration. (n.d.). The bill of rights: A transcription.
National Archives and Records Administration. Retrieved April 11, 2023, from
https://www.archives.gov/founding-docs/bill-of-rights-transcript

[9] Simon Fraser University. (n.d.). Retrieved April 11, 2023, from https://www.sfu.ca/

[10] Thomas, M. (2021, January 17). HTTPS vs SSL vs TLS. Medium. Retrieved April 11, 2023,
from https:/medium.com/plain-and-simple/https-vs-ssl-vs-tls-8a0ad0604276

[11] J. F. Kurose and K. W. Ross, Computer networking: A top-down approach. Harlow: Pearson
Education Limited, 2022.

[12] “What is Google's SPDY protocol and what does it mean for me and my website?,” X4B.net.
[Online]. Available: https://www.x4b.net/kb/Legacy/SPDY. [Accessed: 16-Apr-2023].

17

https://medium.com/plain-and-simple/https-vs-ssl-vs-tls-8a0ad0604276

8 Appendix: HTTP ns3 Simulation Code

using namespace ns3;

int main(int argc, char *argv[])

{
LogComponentEnable("BulkSendApplication"”, LOG_LEVEL_INFO);
LogComponentEnable("PacketSink™, LOG_LEVEL_INFO);

NodeContainer nodes;
nodes.Create(3);

InternetStackHelper internet;
internet.Install(nodes);

PointToPointHelper p2p;
p2p.SetDeviceAttribute("DataRate"”, StringValue("5Mbps"));
p2p.SetChannelAttribute("Delay"”, StringValue("2ms"));

NetDeviceContainer devicesl, devices2;

devicesl = p2p.Install(nodes.Get(®), nodes.Get(1));
devices2 = p2p.Install(nodes.Get(1), nodes.Get(2));

Ipv4AddressHelper ipv4;
ipv4.SetBase("10.1.1.0", "255.255.255.0");

Ipv4InterfaceContainer interfacesl ipv4.Assign(devicesl);
Ipv4InterfaceContainer interfaces2 ipv4.Assign(devices2);

uintle_t port = 8080;

PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory",
InetSocketAddress(interfacesl.GetAddress(1), port));

ApplicationContainer serverApps = packetSinkHelper.Install(nodes.Get(2));

serverApps.Start(Seconds(0.9));

serverApps.Stop(Seconds(10.9));

AddressValue remoteAddress(InetSocketAddress(interfacesl.GetAddress(1),
port));

BulkSendHelper bulkSendHelper("ns3::TcpSocketFactory"”,
InetSocketAddress(interfacesl.GetAddress(1), port));

bulkSendHelper.SetAttribute("MaxBytes", UintegerValue(1000000));

ApplicationContainer clientAppsl = bulkSendHelper.Install(nodes.Get(0));
clientAppsl.Start(Seconds(1.9));
clientAppsl.Stop(Seconds(9.9));

ApplicationContainer clientApps2 = bulkSendHelper.Install(nodes.Get(1));
clientApps2.Start(Seconds(1.0));
clientApps2.Stop(Seconds(9.0));

p2p.EnablePcapAll(“http");

Simulator::Stop(Seconds(11.0));
Simulator::Run();

Simulator: :Destroy();

return 0;

19

